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A B S T R A C T   

System-of-systems approaches for integrated assessments have become prevalent in recent years. Such ap
proaches integrate a variety of models from different disciplines and modeling paradigms to represent a socio- 
environmental (or social-ecological) system aiming to holistically inform policy and decision-making pro
cesses. Central to the system-of-systems approaches is the representation of systems in a multi-tier framework 
with nested scales. Current modeling paradigms, however, have disciplinary-specific lineage, leading to in
consistencies in the conceptualization and integration of socio-environmental systems. In this paper, a multi
disciplinary team of researchers, from engineering, natural and social sciences, have come together to detail 
socio-technical practices and challenges that arise in the consideration of scale throughout the socio- 
environmental modeling process. We identify key paths forward, focused on explicit consideration of scale 
and uncertainty, strengthening interdisciplinary communication, and improvement of the documentation pro
cess. We call for a grand vision (and commensurate funding) for holistic system-of-systems research that engages 
researchers, stakeholders, and policy makers in a multi-tiered process for the co-creation of knowledge and 
solutions to major socio-environmental problems.  
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1. Introduction 

Socio-environmental systems (SES) function across a range of inter- 
related scales that collectively represent a system of systems (SoS). 
The term SoS has been used since the 1950s and various definitions exist 
(Nielsen et al., 2015). In this paper, we distinguish between an SoS as a 
collection of human and natural systems, and SoS models which are 
engineered representations of an SoS. The former is defined as an 
interconnected collection of multiple, heterogeneous, distributed sys
tems that collectively may give rise to emergent behavior, where each 
system represents a process or set of processes. In the modeling of SoS, 
we follow Little et al. (2019) who define SoS models as “a collection of 
independent constituent systems, in which each fulfills its own purpose 
while acting jointly towards a common goal.” (p. 84). In environmental 
modeling, SoS models may take the form of Integrated Assessment 
Models (IAMs) or, more generally, Integrated Environmental Models 
(IEMs), which are commonly applied to inform environmental man
agement processes (Ewert et al., 2011; Iwanaga et al., 2020; Letcher 
(Kelly) et al., 2013; Matott et al., 2009). 

Central to SoS modeling is the view of system representations as a 
multi-tier structure with different levels of abstraction, where systems 
and indicators at lower levels can be scaled up to higher levels. These 
representations capture processes that operate at different scales (e.g. 
temporal, spatial, organizational) in contrast to ‘single-system’ ap
proaches, which assume such drivers to be exogenous and, crucially, do 
not account for any feedback mechanisms between the represented 
systems. This view also sets the focus on how to integrate knowledge 
from the different disciplines involved and coordinate information ex
change among these in a consistent and meaningful way. Knowledge 
integration is not limited to the technical coupling of models, but to 
integration among multi-scale stakeholder and expert processes. This 
combined socio-technical focus makes scale issues and their treatment a 
core consideration of SoS modeling. 

1.1. The need for a holistic treatment of scale 

A crucial ingredient in SoS modeling is attending to the socio- 
technical processes involved. Representation of scales is defined by 
modelers for a particular purpose and is ultimately subject to human 
processes (Meadows, 2008). Accordingly, the representation of an SoS is 
the end-product of what the people involved implicitly or explicitly have 
chosen to represent, and how they implemented their choices. These 
then influence the model structure and uncertainties embedded, and the 
consideration of its different dimensions, analyses conducted, and data 
and methods used (Glynn et al., 2017; Gorddard et al., 2016; Voinov 
et al., 2018). Such choices are subject to the available knowledge, ex
periences, biases, beliefs, heuristics and social values, as well as the 
perceived purpose(s) of the modeling. 

A key scale issue in SoS modeling is the development of a consistent 
and defensible characterization of scale (Elsawah et al., 2020). Existing 
systems analysis and modeling approaches tend to come from 
entrenched disciplinary paradigms and so with a specific focus on their 
scales and facets, and embedded language and terms. Inconsistencies 
then manifest in the conceptualization and treatment of scale in SoS 
approaches, which prevent researchers from: (1) understanding the 
implications of scale choices; (2) formulating, implementing and vali
dating models that are relevant to the questions of interest; (3) pre
dicting future SoS responses in support of decision making (Elsawah 
et al., 2020; Little et al., 2019; Razavi et al., 2020); and (4) communi
cating modeling results in ways that help identify trade-offs and syn
ergies within an SoS and among the systems under investigation 
(Fridman and Kissinger, 2019; Miyasaka et al., 2017). Addressing issues 
that arise from the conceptualization and representation of multiple 
scales are often omitted or left for future discussion (Ayllón et al., 2018). 

Discrepancies in the treatment of scale can be addressed firstly by 
developing a shared understanding of the system(s) being analyzed 

through a holistic interdisciplinary process (Thompson, 2009; White 
et al., 2019). There is increasing recognition that holistic approaches are 
necessary to enable an integrated assessment of scale issues in 
socio-environmental (social-ecological) systems (Schlüter et al., 2019a, 
2019b; Hoekstra et al., 2014). The rise of inter/multidisciplinary fields, 
such as socio-hydrology (Elshafei et al., 2014; Sivapalan et al., 2012) 
and eco-hydrology (Hannah et al., 2004; Porporato and 
Rodriguez-Iturbe, 2002), gives further credence to this need. For SoSs in 
particular, it is necessary to additionally acknowledge the 
socio-technical influences on their modeling. Explicit inclusion of the 
socio-technical perspective pushes beyond traditional modeling ap
proaches, as it advocates assimilation of not only the data and mecha
nistic processes across different systems, but also includes the 
knowledge and information held in the social institutions involved in the 
modeling. 

1.2. Purpose 

The purpose of this paper is to advance knowledge and imple
mentation of interdisciplinary SoS modeling by identifying and articu
lating the practices, issues and challenges involved with respect to issues 
of scale. Central to this interdisciplinary lens is making concrete the 
multidimensional nature of scale issues and the interplay among these. 
Here, the term “interdisciplinary” is favored over trans- or multi- 
disciplinary as the focus is on the “blending” of disciplinary knowl
edge (White et al., 2019). 

The primary audience of the paper is modelers, albeit in different 
domains and scientific disciplines with an interest in adopting an SoS 
approach as a methodological framework in SES modeling. In the 
following (Section 2), we first provide definitions for the key terminol
ogy used throughout this paper. These definitions are not intended to be 
universal but are provided to contextualize and aid in communication 
given the range of disciplines involved in SES modeling. In Section 3, we 
explore issues of scale which need to be considered throughout the 
modeling. We then describe in Section 4 the long-term challenges to
wards resolving such scale issues and suggest paths to be taken in the 
shorter-term. 

2. Concepts and definitions of scale 

2.1. The process of defining scales 

SoS models principally provide a representation of the interactions 
that occur between the systems involved. Holistic integration of 
knowledge from the various disciplines involved is necessary so that the 
implications of the different methodological choices on scale can be 
understood (Elsawah et al., 2020). To this end, a three-day workshop 
was held in October 2019 in which a culturally and disciplinary diverse 
group of 20 participants convened to share their knowledge. An addi
tional 3 contributed in complementary ways to the drafting of this 
paper. Contributors originated from Europe, North America and the 
Asia-Pacific and included engineers, economists, social scientists, 
mathematicians, physicists, hydrologists, computer scientists and 
ecologists. 

To prevent miscommunication, we developed a set of terms (outlined 
in Section 2.2) to build a shared language (Rubin et al., 2010; Spitzberg 
and Cupach, 1989; Thompson, 2009). Although prior definitions of 
“scale” are available (see for example Cash et al., 2006; Gibson et al., 
2000), it was considered useful to develop a shared, empathetic un
derstanding of each other’s perspectives (Banerjee et al., 2019; Thomas 
and McDonagh, 2013). The process additionally served to break down 
cognitive constraints (MacLeod and Nagatsu, 2018), which may other
wise blind researchers to relevant notions of scale allowing disciplinary 
bias to creep in and knowledge gaps to form. The range of disciplines 
involved in SES modeling often makes addressing cognitive constraints 
difficult, as there are different notions of scale, and related terms are 
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used in different ways depending on context. This variance has been 
observed in the use of common terms with conflicting definitions be
tween (and sometimes within) disciplinary fields (Bridle et al., 2013). 

2.2. Scale terminology in SoS modeling 

Defining the terminology associated with scales was an arduous 
process at first, owing to the diversity amongst workshop participants. A 
brief overview of the resulting primary terms used in this paper is pro
vided in Table 1. For the discussion here, “scale” is taken to have an 
expansive definition, covering the scope of work to be conducted in the 
treatment and representation of system processes. Aspects of scale that 
had unanimous consensus included the commensurability of the choice of 
scale within the purpose of the modeling, and the consistency of spatial 
and temporal scales across models. It was also acknowledged that scale 
can mean many things beyond the spatial and temporal, for example the 
less tangible such as treatment of ethical considerations within the 
modeling process (e.g. Häyhä et al., 2016). Regardless of definitions, 
treatment of scales - and the choices made in this treatment - influences 
the model uncertainties and the outcomes of the modeling. 

Commensurability refers to the appropriateness of the selected ap
proaches and methods for the SoS modeling purpose. Broadly speaking, 
these approaches can be described as being subject to socio-technical 
considerations, which are the focus of the discussion in this paper. The 
social (human) aspect of modeling includes the circumstances of 
collaboration, project management and participatory processes, as well 
as those settings influencing the technical aspects, including modeling 
and computational considerations. 

The spatial and temporal features of a system are often the primary 
aspects around which scale is traditionally considered and framed. 
These define the time and space of interest (both their horizons and 
discretization) and the events and processes that are considered 
important to represent (Cash et al., 2006). The spatial scales selected 
may be influenced by the temporal scales of interest, and vice versa. 
Their dependence can be intensified by the fact that spatio-temporal 
scales are often influenced by factors outside their defined boundaries. 

Such influences may be important but may not be well understood or 
ignored (Zhang et al., 2014b, 2014a). 

Resolution defines the granularity of system representation and refers 
to the unit of spatial/temporal scale represented in each system. Reso
lution may be spatial or temporal in nature but extends in other ways 
such as to social units (individuals to families to communities, etc.) and 
thus may be represented so as to conform to a semantic or conceptual 
hierarchy (Cash et al., 2006). Choice of resolution is highly dependent on 
the modeling context, generally informed by the availability of data, the 
needs of the model (including for numerical stability, sensitivity and 
model identifiability), and model purpose. 

Hierarchy and their respective levels of organization relate to the 
representation of nested relationships among systems (Ostrom, 2007). 
For example, various governance systems may co-exist at a range of 
scales with separate administrative or institutional concerns (Daniell 
and Barreteau, 2014). Team-based organizations are one example where 
the hierarchical scales may not be constrained to specific locations, with 
members performing a variety of roles within an organization that may 
be geographically spread across different time zones. 

Actors influence and define the aspects of scale that are considered 
and may be both human and non-human entities which affect or influ
ence one another. The term has its roots in the social sciences (an 
example may be found in Wessells, 2007). Actors have roles and carry 
out one or more activities in the system and can be represented indi
vidually or collectively. Human actors have attributes such as values, 
goals and mental models, which influence their behavior (Pahl-Wostl, 
2007). Non-human actors are defined here in a literal sense (i.e. not an 
individual biological person) such that organizations, flora and fauna 
are non-human actors but may still exhibit collective culture and per
sonalities (Hobday et al., 2018; Schneider et al., 2013). A system can 
encapsulate many actors and may be an actor itself. 

The different types of system modeling encompass many terms that 
are often used interchangeably across the sciences. As alluded to in the 
introduction we are guided by, but do not directly adopt, definitions as 
applied in system-of-systems engineering (cf. Dahmann and Baldwin, 
2008). Here, a single-system model targets a specific system, for instance 

Table 1 
Brief descriptions of the primary terms defined in this paper and relevant literature. Where no references are provided, the terms are assumed to be generic and widely 
known.  

Term Definition Relevant Literature 

Spatial/temporal Spatial and temporal aspects define, respectively, the bounds or horizons over the space 
and time frame of the events and processes of interest as well as their discretization in a 
model. 

N/A 

Multi-system model A catch-all term referring to any model that represents multiple systems. N/A 
Emergence or emergent 

behavior/simplicity/ 
complexity 

Here, emergence relates to the behavior of the system and can span from simple to 
complex. Emergent complexity describes the complex, possibly chaotic, behavior that 
arises from the collective interactions of simple constituent systems, whereas emergent 
simplicity is the opposite. 

Bar-Yam (1997) 

System and System of systems At its core a “system” refers to a collection of processes and mechanisms that may interact 
depending on context. 
A system of systems is represented as a collection of autonomous constituent systems that 
give rise to collective behavior. A constituent model may, itself, be a system-of-systems 
model. A system-of-systems model then is an interconnected, tiered, network of models. 

(Eusgeld et al., 2011; Little et al., 2019; Tranquillo, 
2019) 

Integrated model A model which consists of two or more separate and separable models, connected through 
a common computational framework to allow automated interactions between models to 
occur. 

(van Ittersum et al., 2008; Voinov and Shugart, 
2013; Whelan et al., 2014) 

Resolution/Granularity The represented unit of scale at which a system component is modeled (e.g. unit of 
distance, volume, time, social unit, etc.) 

(Ewert et al., 2011; Groen et al., 2019; Neumann 
et al., 2019) 

Actor Actors are entities, both human and non-human (e.g. objects, biota, flora and fauna, 
institutions, and organizations), which influence the modeling, the pathways taken 
throughout the modeling process, and their representations within a model. 
Actors may themselves be composed of actors, such that a system is an actor within a 
larger system (e.g. engine in a car, team within a company, etc.). Actors may influence one 
another through a network of relationships and be modeled as such. Actors may embody 
collective culture and personalities, as may be the case with teams and organizations. 

(Cresswell et al., 2010; Macy and Willer, 2002; Tate, 
2013; Hobday et al., 2018; Schneider et al., 2013) 

Hierarchy/Level The ordered linkage crossing scales, which may be spatial/temporal (neighborhood to 
city) or virtual/conceptual (employee and employer), and these may be nested within one 
another. 

(Ostrom, 2007; Schweiger et al., 2020; Steinhardt 
and Volk, 2001)  
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an agricultural system without explicit representation of the hydrolog
ical dynamics or climatic influences. Consequently, single-system 
models constrain themselves to the concerns and considerations of a 
single sector. Models concerned with a single system may, of course, use 
several models internally (e.g. crop growth, soil water properties, etc.) 
and these are referred to here as component models. 

A direct approach to representing additional systems can be 
accomplished by applying, albeit separately, a selection of single-system 
models for a given problem domain. In such cases, knowledge gained in 
the application of a model may inform the use of another. Data from one 
model may be fed into another, and vice versa, typically via manual 
processes. For example, a weather forecast model may be used to pro
vide inputs to an agricultural model to determine seasonal effects on 
crops, and the agricultural model may provide land surface boundaries 
to the weather forecast model. 

Multi-system representations can be integrated by coupling models 
together such that data interoperation occurs in an automated fashion. 
Individual “system level” models are then referred to as constituent 
models. The advantage of multi-system models over their single system 
relatives is that the impacts and feedback mechanisms can be repre
sented across/between their individual scales (Elag et al., 2011; 
Tscheikner-Gratl et al., 2019; Wang et al., 2019). Multi-system models, 
with their explicit representation of system interactions, are therefore 
capable of providing more holistic assessment compared to the use of 
individual models in isolation (Kelly (Letcher) et al., 2013). 
Component-based modeling stems from Component-Based Software 
Engineering (Vale et al., 2016; Hutton et al., 2020) and common usage 
in environmental modeling typically makes no distinction between 
constituent and component models (e.g. Malard et al., 2017). A 
conscious decision has been made here to adopt the term “constituent” 
from the systems engineering field (Nielsen et al., 2015) to convey this 
distinction. 

It is important to note that “integrated” and “multi-system” models 
could then equally apply to both single-system models with several 
component or constituent models. The requirement for a model to be 
regarded as “integrated” is that its (component or constituent) models 
are coupled together through the use of a common automated infra
structure to facilitate data interoperation (see for example, Malard et al., 
2017; Whelan et al., 2014). By necessity, multi-system integrated 
models are more complex and may involve a variety of modeling par
adigms (e.g. Bayesian networks, agent-based, system dynamics, etc.) 
and their combinations. 

An SoS model is then regarded here as an integrated model with 
constituent models. Each constituent model may be a single-system or 
another SoS model such that a tiered network of relationships between 
models is formed, with each representing a layer of abstraction. In SoS 
modeling, each constituent model may operate across different spatial/ 
temporal scales, hierarchical levels, and resolutions to incorporate 
multiple aspects of distinctly separate (disciplinary or sectoral) domains 
and modeling paradigms. An SoS perspective allows, but does not pre
scribe, consideration of complex system properties including non
linearities, interdependencies, feedback loops, thresholds and 
emergence. 

3. Scale issues to consider 

Models are developed through a life cycle of various phases, each 
with specific considerations and steps (the “modeling cycle”; Grimm and 
Railsback, 2012; Hamilton et al., 2015; Jakeman et al., 2006). SoS 
modeling is more complex compared to ‘single-system’ models due to 
the number of people and disciplines involved as well as the de
pendencies between the constituent models. Similarly, management of 
the modeling process is made more complex, as there is not a single 
modeling cycle, but multiple cycles occurring asynchronously. Each 
actor and model may have separate objectives and purposes, priorities 
and differing levels of available resources not to mention the need to 

consider the availability of resources for the SoS modeling as a whole. 
The sections below are adapted from the modeling phases identified 

in Badham et al. (2019) and Hamilton et al. (2015), wherein the actions 
undertaken in each modeling phase are described. In contrast, we 
identify the relevant phases within an SoS context and outline the 
considerations with respect to scale issues. Fig. 1 depicts the high-level 
considerations/objectives within each phase. While the sections below 
are presented in a sequential manner, we stress that modeling is an 
iterative and concurrent process. 

3.1. Scoping phase 

In this phase, the objectives of the modeling are clarified by defining 
the problem and how modeling is intended to address it. Examples of 
model (or modeling) purpose could be to fill gaps in knowledge, to 
support learning and communication processes, to validate current un
derstandings and assumptions, to predict what might happen in the 
future, or to carry out scenario analysis (Badham et al., 2019; Kelly 
(Letcher) et al., 2013). Ideally, this scoping phase results in a clear un
derstanding of the model types and components that need to be devel
oped or, in later iterations, their limitations with respect to the model 
purpose and how to address these. 

3.1.1. Problem definition and scoping 
While the overarching purpose of the SoS model may be known, the 

specifics may be less clear at the outset. Development of a consistent and 
shared view of the scales to be considered involves communication of 
the scope and interactions across the constituent systems between all 
involved (see Fig. 2). This process can aid in identifying and addressing 
areas that require reconciliation of different views that often exist across 
the stakeholders. Awareness of the scale issues will likely evolve as the 
modeling progresses through the iterations. The choice of modeling 
pathways and methodological framework employed is heavily informed 
by this awareness (MacLeod and Nagatsu, 2018). 

Involvement of stakeholders, including domain experts, through 
participatory processes can inform the identification of relevant scales in 
the face of uncertainty and (poor) data availability (Hamilton et al., 
2015; Kragt et al., 2013). Stakeholders can also play a role in selecting 

Fig. 1. The phases in the modeling cycle (adapted from Badham et al., 2019, 
and Hamilton et al., 2015) with key considerations within each phase. 
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and combining data, furthering holistic consideration of system actors 
and aid in developing the model purpose. The relationship between 
actors and their roles in framing the scale, scope and purpose of the 
modeling has been previously recognized (Kragt et al., 2013; Refsgaard 
et al., 2007) and is further explored in the next subsection. 

Insufficient consideration or agreement regarding the overarching 
purpose of the SoS model may ultimately affect model performance and 
outcomes (Connor et al., 2019). The higher number of actors in SoS 
modeling increases the difficulty in reconciling different or mismatched 
perspectives, requirements and purposes. This is a “problem of hetero
geneity” (O’Connell and Todini, 1996) and is not restricted to any single 
discipline. Often, and by necessity, the scale of the modeling is to be 
commensurate with its purpose, including the level of certainty being 
sought, and the available resources. 

Purpose and use of constituent models may be mismatched if con
flicting perspectives over the scope of the modeling are not addressed. 
Modelers that have different goals in mind may only consider scales 
relevant to their immediate (and often discipline-specific) concerns, 
leading to an improper selection of constituent models. There is poten
tial for a high degree of mismatch between constituent models even if 
modelers coordinate their efforts. Unexpected cascades of effects 
through scales is commonplace in complex systems (Tranquillo, 2019), 
and could arguably be taken as the rule rather than the exception. 

Change in scale may also occur during the modeling process, due to 
new information that triggers a necessary change in model context. The 
scale of model interactions to be represented can also influence the 
number and type of constituent models included, and overall system 
complexity. The choices regarding scale then have implications for how 
well interactions among systems can be represented with respect to the 
model purpose. Scope creep, wherein the scale of the modeling is 
continually extended to cover contexts not originally envisioned (cf. 
Barton and Shan, 2017), may eventually compromise modeling efforts, 
as available resources get stretched too thinly to achieve sufficient 
progress (Sarosa and Tatnall, 2015). 

Choice of scales is further compounded in cases where system bounds 
cannot be clearly and definitively defined. Coastal zones, atmospheric 
systems, and natural resource management systems are examples of 
systems with ambiguous system boundaries. Social systems and their 
dynamic structures are another example that do not have clear bound
aries yet place important, even governing, conditions on system 
behavior. Such social systems, and their influences, are so far under- 
represented in current integrated assessment efforts (Zare et al., 
2017). The lack of clear boundaries of such systems are often considered 
to be part of the problem (Voinov and Bousquet, 2010). 

Reconciling conceptual differences and perspectives between human 

actors can be demanding but not insurmountable. There are various 
methods available for group decision making, such as the Delphi tech
nique (Gokhale, 2001), which can be used to help the group reach 
agreement on the definition of the problem and/or the system bound
aries. The subsequent modeling itself can be used to combine and 
reconcile different views among stakeholders, and may be useful in 
cross-cultural or particularly contentious settings (cf. Potter et al., 
2016). The influence of modeler and stakeholder bias can also be con
strained such as by using numerical optimization and/or exploratory 
modeling processes (Martin et al., 2017; Reichert, 2020). The influence 
of personal preferences is restricted by using the exploratory approach 
as it focuses on identifying the relevant scales and conditions (or com
binations of conditions) that normally lead to desirable outcomes. 

3.1.2. Stakeholder planning 
Here, “stakeholder” refers to the individual or groups that may affect 

or be affected by the modeling or have an interest in its outcomes 
(Freeman, 2010). Thus, in this context, the modelers (and teams of 
modelers) are also stakeholders. There is a plethora of 
stakeholder-focused approaches (e.g. in integrated modeling, partici
patory modeling), but these methodologies are still limited in their ca
pacity to deal with scale-specific questions and challenges brought by 
SoS modeling (Jordan et al., 2018). Generally, participatory approaches 
aim to bring together the multiple goals, issues, and concerns of interest 
from multiple scales and governance systems by developing a mutually 
beneficial relationship between stakeholders (Thompson, 2009). 
Thoughtful consideration of transparency, traceability and governance 
issues in engagement and participatory processes (Cockerill et al., 2019; 
Glynn et al., 2017) will be essential for optimizing saliency, legitimacy, 
and credibility of the SoS modeling (Cash et al., 2003). 

The participation of a higher diversity of stakeholders in such pro
cesses allows for a more holistic representation to be developed, 
covering potential ‘blind-spots’ in the system conceptualization and 
avoiding the “siloing” of knowledge (Hoekstra et al., 2014). Including 
further perspectives may increase the complexity of the modeling, and 
so requires careful management of individual expectations and biases 
(Martin et al., 2017). Management of an SoS may at times be predicated 
on effective management of stakeholders and their level (and capacity) 
of involvement (Ostrom, 2007; Boone and Fragaszy, 2018). 

Increases in the variety of perspectives also increases potential for 
conflict - defined here as disagreements of any degree - between teams, 
team members and/or stakeholders. On the one hand, there is evidence 
that conflict plays a positive role in learning and effective teamwork 
(Tjosvold et al., 2003). Such positive benefits, however, may only occur 
in cases where there are high levels of pre-existing trust within the 

Fig. 2. Continuous and repeated interactions between human actors (domain experts, stakeholders, modelers, etc. represented by the different colored circles), and 
between their social groups, are necessary throughout the modeling process to ensure mismatches in system conceptualization and constituent model scales 
are avoided. 

T. Iwanaga et al.                                                                                                                                                                                                                                



Environmental Modelling and Software 135 (2021) 104885

6

group, and when the conflict is task-related rather than interpersonal 
(De Dreu, 2008). Power dynamics within teams and stakeholders 
therefore need to be considered (National Research Council, 2013). 
Identification and focus on objectives that require participants to work 
together (known as goal interdependence) is an identified foundation 
towards project success and may additionally help in avoiding conflict 
(Knight et al., 2001; Lee et al., 2015; Tjosvold et al., 2003). Careful 
design and management of interactions between teams and stakeholders 
requires an explicit consideration of how the multiple, and at times 
contradictory, objectives might align or connect. Approaches to conflict 
resolution and prevention (e.g. boundary critiquing, Midgley and 
Pinzón, 2011) are promising, but still under-utilized techniques. 

Effective stakeholder engagement will in practice be impacted by 
geographic spread (Allen and Henn, 2006), as the realities of scheduling 
rarely allow all stakeholders to be engaged at the same time and place. 
Additionally, a diversity of stakeholders (e.g. policy makers, scientists, 
and the public) mean material and modes of communication may need 
to be tailored for each. Online participation platforms and technologies 
extends the reach to participants and are appealing for their asynchro
nous and distributed modes of engagement (Yearworth and White, 
2018). These relatively new technologies are simply tools, however, and 
a capacity to both use and leverage their advantages is also required 
(Cooke et al., 2015). Regardless of how interactions are to occur, 
without documenting a Record of Engagement and Decision-making 
(RoED, Cockerill et al., 2019), the original purpose, assumptions, and 
social and biophysical context of the engagement and resulting model 
choices might be lost, leading to mismatches in understanding, 
conceptualization, and implementation. The literature is still limited on 
the effectiveness of using different participatory methods for different 
purposes and audiences (Voinov et al., 2018). Nevertheless, plans for 
stakeholder engagement for SoS modeling should explicitly consider the 
scaling challenges, and devise strategies to deal with these. 

3.1.3. Preliminary conceptual model 
The preliminary conceptual model represents the current under

standing of the system and the relationship between constituents, 
including identification of key drivers, interactions and outputs of in
terest (Badham et al., 2019). In describing and capturing the essence of 
the system, development of the conceptual model helps with the design 
of the subsequent (computational) model as well as making concrete the 
model purpose. Two scale-specific aspects are to be considered here: the 
approach used for conceptual model development (see Table 2 for a 
general overview) and the formal representation (e.g. equations, tech
nical specifications, etc.). The processes that are included or excluded 
based on actors’ perceptions, priorities, beliefs, and values under the SoS 
context will inevitably influence the data leveraged, the properties of the 
computational model, and therefore the paths taken. 

Few mapping techniques exist that focus on illustrating multi-scale 
representations. Scale separation maps (Hoekstra et al., 2007) or 
Stommel diagrams (Scholes et al., 2013) represent the scales of the 
constituent systems on a two dimensional space-time map. System dia
grams, such as the representations used in van Delden et al. (2011) and 
Oxley and ApSimon (2007), organize the system components according 
to their spatial and/or temporal scales, and show the interactions be
tween these components. On the other hand, coupling diagrams (Fal
cone et al., 2010) show the flow of data between models. 

A further approach is to use the ODD protocol, named after its three 
blocks: Overview, Design concepts, and Details (Grimm et al., 2006). 
The original purpose of the ODD protocol was to describe and enable 
transparent communication of agent-based models (ABMs) to ensure 
their replication and the reproducibility of results based solely on the 
model description (Grimm et al., 2020). The conceptualization involved 
in the Overview block mandates identifying the scales of the processes or 
system components to ensure a shared understanding of the system 
being modeled. This is further complemented with the identification of 
relevant resolutions and spatial/temporal bounds. At this stage, the 

bounds can be vaguely defined (e.g. local, regional, global). This initial 
assessment of the scales involved may be revised throughout the 
modeling process as understanding improves. The ODD protocol is 
under continual development, and planned additions extend its 
consideration and applicability of use to other areas not previously 
considered (as outlined in Grimm et al., 2020). 

If differences in conceptual understanding of the scales and their 
interactions cannot be reconciled at this stage, it is possible to create 
multiple alternative models representing the different hypotheses which 
can be tested in later stages of the modeling process. Such an approach 
can also assist in assessing uncertainty rooted in model building choices, 
as the treatment of scale may affect model outputs and outcomes 
(further discussed in Section 3.2.4). Although conceptual diagrams can 
be developed without specifying the scales involved, explicit consider
ation of scale is valuable for avoiding misinterpretation of the concep
tualization and ensuring key variables and processes are included. A 
useful reflexive exercise, not usually reported but aiding transparency, is 
to identify what alternative approaches were considered, or could have 
been considered, and how these may have affected results and outcomes, 
if adopted. 

3.2. Development phase 

3.2.1. Collecting data, information, and knowledge 
Data, information and knowledge for each constituent model may 

come from the field or through literature, solicited through expert and 
stakeholder engagement, or collected through analysis. Considerations 
towards data collection in the integrated setting have been previously 
explored in Badham et al. (2019). Correctly communicating and inter
preting data across heterogeneous systems, however, requires that the 
data are interoperated between constituent models and that model 
behavior across scales remains valid and meaningful (Renner, 2001). 
For this purpose, metadata serves an essential role. 

Transparency in the collection process and approval from those 
involved in the modeling are necessary to ensure that collected data 
remain conceptually relevant across scales. Furthermore, transparency 
in the context of data collection and usage is a key factor to develop trust 
among stakeholders and model users, and future adoption of the con
stituent models (Barba, 2019; Gray and Marwick, 2019). Data may need 
to be transformed to be fully relevant for the context of its intended use, 
such as up-or-downscaling to ensure compatibility with other processes. 
Ideally, metadata would include information on the data collection, 
uncertainty and transformation process, which aids in determining the 
appropriateness of data for the SoS model. Explicit descriptors of both 
input and output data can assist in identifying the commensurate level of 
data collection with respect to available resources. 

Modeler bias can have a compounding effect as the choice of data 
collection, as well as the metadata that describes the data, influences 
how system interactions are perceived, and thus conceptualized (Bhat
tacherjee et al., 2008). What may be considered irrelevant in one field 

Table 2 
Description of the general approaches in the development of multi-scale models, 
adapted from Ingram et al. (2004).  

Approach Description 

Top-down Creation of a coarse generalized model which is then progressively 
refined to an appropriate mix of scales. 

Bottom-up Models are developed at the smallest resolution initially 
conceptualized to be necessary and are then expanded to encompass 
scales as further information becomes available. 

Middle-out Development of the SoS model begins at the scale richest in data or 
information, working “outwards” towards smaller and larger scale 
models, as necessary. In SoS modeling, what is “richest” is likely to be 
subjective to each discipline and available understanding. 

Concurrent The process of constructing models to represent all hierarchical levels 
at the same time.  
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may dictate modeling pathways in another. In an SoS setting there are 
many more participants involved and so there is a high degree of un
certainty stemming from the decisions made as a result. 

Data quality and informativeness (e.g. accuracy or precision) pro
vided by constituent models may also be diverse. Diversity of data ob
tained from a diversity of sources, however, runs the risk of conflicting 
information (Gray et al., 2012). Modelers from different disciplines may 
also utilize different scales for the same process, resulting in in
consistencies, and thus errors, the sources of which are difficult to 
identify. In this regard, non-quantitative sources of information, gath
ered from literature and/or through stakeholder engagement, may 
become key assets that resolve such issues (Grant and Swannack, 2007). 
In cases where data describing a particular linkage in an SoS model are 
not available, theoretical relationships, generally applicable empirical 
relationships, or model process and output can be useful representations 
for the purpose of the SoS model (Rai et al., 2002). The documentation 
developed in the Scoping phase can be leveraged to ensure applicability 
and validity with regard to the model purpose. 

3.2.2. Construction 
Construction of computational SoS models requires the marrying of 

domain expertise from across the various disciplines involved with 
technical software development knowledge. While the overarching 
context may be well-defined within the scoping phase, it is in this 
Construction step that the individual components, and the scales they 
represent, are developed, and coupled, tested and validated. Here, 
existing models may be repurposed or new models developed. The 
specifics of their initialization, interoperation, method of execution and 
management of the data involved are to be determined and prototyped 
in this phase (Igamberdiev et al., 2018; Madni and Sievers, 2014). 

A balanced approach is needed in SoS model development that takes 
several factors into account. There is a danger that the models them
selves become treated as pieces of software that merely require 
connection, ignoring the socio-technical context for their intended use 
(Voinov and Shugart, 2013). Another issue is the overparameterization 
of constituent and component models (Brun et al., 2001; Nossent and 
Bauwens, 2012), as simply integrating these models to form an SoS 
model exacerbates issues of uncertainty and identifiability (consider
ations of which are explored in the following sections). At the same time, 
ignoring the technical considerations of integration is also inadvisable 
(Verweij et al., 2010). Mitigating the issues that consequently arise be
comes increasingly difficult as more systems and scales are included 
(Voinov and Shugart, 2013; Wirtz and Nowak, 2017). 

Requisite systems could be represented at the level of detail neces
sary for the SoS model purpose through a tiered modeling structure 
(Little et al., 2019). Implementation of such a tiered approach can 
involve developing metamodels or entirely different system models. 
Metamodels being simplified representations of more complex models 
(revisited in Section 3.3). Two pertinent issues in SoS model construc
tion are the focus below: managing the conceptual inter-connection 
between models, and the process of integration. 

3.2.2.1. Conceptual integration. Conceptual integration of constituent 
models can benefit from requiring that constituent models be mecha
nistic as opposed to black boxes. When a model is implemented as a 
black box, it becomes difficult to evaluate and understand (Lorek and 
Sonnenschein, 1999). SoS modeling may make use of pre-existing 
models which constitutes re-purposing, implying the transference of 
the model assumptions, limitations, and scale to a new context. It is 
emphasized here that model suitability within its original context is not 
necessarily applicable to the new context (Ayllón et al., 2018; Belete 
et al., 2017; Voinov and Shugart, 2013). Availability of code alone, for 
example, does not imply transparency. What is important is the 
contextual information that is necessary to assess the suitability of the 
model purpose and functionality. 

A key challenge then is ensuring the box remains open and trans
parent rather than closed and opaque. Opaque development can be 
attributed to the modular nature of constituent model development, 
with the teams working separately - both conceptually and geographi
cally - and often split along disciplinary lines. Such teams can be 
described as self-organizing (Sletholt et al., 2012) but may lack 
cross-disciplinary knowledge (cross-functionality, as in Hidalgo, 2019; 
Hoda et al., 2013). The lack of interdisciplinary communication between 
teams then results in black, or at best gray, box models to those not 
involved in their development. 

What is important in this interdisciplinary context is clear docu
mentation and an organizational culture that supports the perpetuation 
of the relevant contextual knowledge. As previously mentioned in Sec
tion 3.1.3, describing the model and its conceptual linkages in a single 
canonical document via the ODD Protocol (introduced in Section 3.1.3) 
is one approach that could be leveraged. Furthermore, a “nested ODD” 
approach may be adopted in the case of complex SoS models wherein the 
constituent models may be another SoS model. 

3.2.2.2. Technical integration. Technical integration refers to the cor
rectness of model interactions, recognizing the distinction between 
conceptual or abstract representation (e.g. an equation or flow diagram) 
and its implementation as software. Successful technical integration of 
computational models requires the necessary engineering expertise to be 
available (Knapen et al., 2013). Crucial considerations are that constit
uent models interact and accordingly that errors will propagate (cf. 
Dunford et al., 2015), and that each constituent model may undergo its 
own separate development cycle which invariably necessitates continual 
adjustments to be made. 

Flexibility of integration is often desirable as it allows the model to 
be resilient against changes in the modeling scope. Flexibility facilitates 
investigations into model structure (of both constituent and component 
models) and the technical design considerations that lead to flexibility 
allows for the composition of different combinations of relevant code 
and data represented through a nested hierarchy (e.g. ‘loose coupling’; 
Elag et al., 2011; Vale et al., 2016; Whelan et al., 2014). Use of inte
gration frameworks are helpful in that they allow the treatment of in
dividual models as loose, composable, modules that provide some 
flexibility in dealing with the range of scales involved. 

Current integration frameworks typically have their roots in specific 
disciplines and tend to focus on physical processes (cf. Ayllón et al., 
2018). The Open Modeling Interface (OpenMI, Moore and Tindall, 
2005), for example, has had to evolve from its initial focus in the hy
drological sciences to accommodate an interdisciplinary modeling pro
cess (Buahin and Horsburgh, 2018). Thus, while the processes and 
requirements of such frameworks may be generally applicable, there 
remains some difficulty in their generic implementation and adoption 
within the interdisciplinary context of SoS modeling. 

In some cases, such frameworks may be overly complex or otherwise 
unsuitable for the purpose and context in which the modeling is being 
conducted. Such difficulties may be resolved in the future as improve
ments to these frameworks are ongoing (Voinov and Shugart, 2013). 
Often modelers adopt a less formalized approach to avoid an inappro
priate or constraining framework. In either case, ensuring semantic and 
conceptual correctness between models is typically left to the modelers 
themselves (cf. Hutton et al., 2020). Direct, manual, “tight-coupling” of 
models without the use of integration frameworks is still very much the 
norm. 

More recent efforts include a collaborative web-based platform 
through which the conceptual, semantic and technical integration oc
curs (OpenGMS, in Chen et al., 2019; Chen et al., 2020). Faster feedback 
between participants then allows identified issues to be addressed 
earlier. Other approaches provide a curated ontological set of de
scriptors for common phenomena of interest (e.g. snowmelt or rainfall). 
These can be referred to as “system variables” (as in Pacheco-Romero 

T. Iwanaga et al.                                                                                                                                                                                                                                



Environmental Modelling and Software 135 (2021) 104885

8

et al., 2020) and efforts to record their quantities (e.g. centimetre, 
grams, etc.) and relevant operators in a specific metadata format have 
also been undertaken (e.g., the Standard Names, in Hobley et al., 2017). 
Having the inputs and outputs described and documented in such a way 
aids in reducing potential mismatches in later (re)use and could be used 
to enable later automated model coupling. Frameworks do not yet fully 
automate conversions or identify incompatible or inconsistent usage (e. 
g. litres per second to degrees Celsius) although this is likely to change in 
the near future. 

Both the selected framework and constituent models may change 
over the course of the modeling cycle along with the scales represented. 
Such changes may affect its appropriateness with respect to the model 
purpose. For example, adoption of a particular framework or model may 
increase the computational requirements or necessitate changes to 
constituent models to allow interoperation. Inadequate consideration of 
the concerns and requirements of the modeling as a whole may occur in 
cases where cognitive constraints are still in place. The modeling process 
may be smoothed if requirements of the later phases are kept in mind 
during the design, construction (or selection) of models, and the re
sources allocated – including the availability of expertise – to each of 
these activities. 

3.2.3. Model calibration 
Calibration is the process of tuning parameters or altering the func

tional forms of equations or relations to achieve desired model behavior 
(Bennett et al., 2013). In SoS modeling, issues such as non-identifiability 
and equifinality (Beven and Freer, 2001; Guillaume et al., 2019), curse 
of dimensionality (Bellman, 2015), computational burden (Razavi et al., 
2010), and data representativeness (Beven and Westerberg, 2011; Singh 
and Bárdossy, 2012) may all be amplified. 

Calibration implies the existence of appropriate and sufficient data to 
calibrate models against. Availability of data relevant for the modeling 
purpose is a requirement no matter how perfect the model may be. 
Conversely, a lack of data does not imply subsequent modeling is not 
useful. A model with high uncertainty may still characterize uncertainty 
in a way that is meaningful to decision makers, for example indicating 
the comparative tradeoffs between available management options 
(Reichert and Borsuk, 2005). Assessment of uncertainty can be helpful in 
determining the relative “worth” of data to be collected to better char
acterize uncertainty and inform future modeling or research 
(López-Fidalgo and Tommasi, 2018; Partington et al., 2020). Such 
optimal experiment design approaches may also be leveraged to maxi
mize the use of available data (Bandara et al., 2009; López–Fidalgo and 
Tommasi, 2018; Vanlier et al., 2014). 

Arguably, model calibration within the SoS paradigm can take three 
general approaches: (1) calibration of each constituent model indepen
dently before integration, (2) calibration of all models together after 
integration, or (3) a combination thereof. The first approach is the 
simplest and most straightforward as each constituent model would be 
calibrated within its own domain (Phillips et al., 2001). While prag
matic, it ignores the effect of representing different scales across the 
represented SoS and system-system interactions, which in turn affects 
model behavior and performance of the individual constituent model. If 
a model is considered “calibrated” when both an acceptable level of fit 
and reasonable parameter values are found (as in Anderson et al., 2015), 
calibration in the disintegrated context does not necessarily transfer to 
the integrated context. In other words, what is “reasonable” in one 
context may not be so in another, and the selected parameter values may 
not be robust to the change in context that integration brings due to the 
different scales, interactions and data space involved. 

The second approach is seemingly the most comprehensive approach 
to model calibration, as every possible interaction between models could 
be present in the process of model calibration (Huang et al., 2013). 
Interdisciplinary knowledge is leveraged to ensure calibrated values are 
both reasonable for the expanded operationalization. This then enriches 
the data space for individual constituent models and improves their 

performance (Jones et al., 2017). The approach, however, has the 
following major barriers:  

• The search space for model calibration will be excessively large (Ling 
et al., 2012). In addition, new (possibly erroneous) interaction effects 
might emerge between the parameters of one model with those of 
another model, especially with different scales of information, which 
makes the response surface extremely complex for model calibration. 
The calibration process might then become computationally 
cumbersome and/or infeasible.  

• The available data with different scales may not be enough to 
properly constrain the model in the process of calibration (Ingwersen 
et al., 2018), as it is not identifiable from the data (Guillaume et al., 
2019). There is a risk of overfitting as well, as the available data 
might be insufficient to produce a generalized model that covers the 
integrated domain.  

• Expert knowledge for each model may have scale constraints and 
may not be easily transferable to the full SoS domain (Howard and 
Derek, 2016). 

In the third approach, models are integrated one-at-a-time, incre
mentally adding complexity so that the influence of each constituent 
model can be directly attributed and subsequent issues can be addressed. 
This approach may include modifying the conceptualization as neces
sary and sequentially calibrating the resulting integrated configurations 
(Duchin, 2016; Duchin and Levine, 2019). While this approach may be 
as pragmatic as the first, and perhaps as comprehensive as the second, 
the disadvantage is the time and computational cost to perform 
sequential coupling and calibration. Such an approach would seem more 
practical in cases where there is little disciplinary friction and a rela
tively small number of models to be integrated. 

In all approaches above, the role of expert knowledge in determining 
the acceptability of the calibration cannot be understated. In manage
ment contexts, for example, change in policy (e.g. the governing rule
sets) may impart shifts in system behavior that may be hard to discern by 
examining quantitative data alone, and even more difficult to represent. 
Machine learning approaches may assist in identifying and representing 
non-stationary system behavior (e.g. Rui Wu et al., 2019; Razavi and 
Tolson, 2013) but still require intensive data for training and validation 
by experts where possible (Razavi and Tolson, 2013), and scale issues 
still exist between different single-system models or different levels of 
model integration. Such information in one system may have implica
tions for how other constituent models are calibrated, and so interdis
ciplinary communication, awareness and consideration of the 
intertwining issues is necessary to safeguard against mismatches. 

A calibration method which seems not to have been used explicitly 
for SoS models is pattern-oriented modeling (Grimm and Railsback, 
2012; Railsback and Grimm, 2019; Wiegand et al., 2004, 2003). Here, a 
set of patterns observed at different scales and levels of organization is 
used to reject, as a set of filters, unsuitable parameter combinations and 
process representations, and may be closely related to the use of hy
drologic signatures for (hydrological) model calibration and testing 
(Gupta et al., 2008). As for parameters, this approach corresponds to the 
rejection method in Approximate Bayesian Computing (van der Vaart 
et al., 2016). The basic idea is that a combination of “weak” patterns, 
which by themselves do not contain much information and thus would 
not reject many parameter combinations, can be as efficient as using a 
“strong” pattern, which is highly distinctive, but might not be available. 
For models with multiple scales, this approach holds high potential as it 
would help to keep both the SoS and constituent models within realistic 
operation spaces. 

3.2.4. Uncertainty analysis 
SoS models often target large problem domains which necessitate 

complex models for their assessment and by their nature have a high 
degree of uncertainty. For the discussion here, we speak to the 
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quantitative and qualitative aspects of uncertainty, which may be 
further classified based on their source or primary influence. Prior 
literature, for example, speaks of model structure, technical, parameter, 
scenario, contextual and predictive uncertainty (for further description, 
see Beven, 2009; Pianosi et al., 2016; Walker et al., 2003). 

Quantitative approaches aim to measure the effect of uncertainty in a 
specific parameter, input or assumption on an output and allow the 
numerical characterization of the output distribution and therefore 
model behavior (Saltelli et al., 2019; Zimmermann, 2000). Qualitative 
uncertainty, however, cannot be characterized with a value and arises 
from sources such as the biases and subjective beliefs of human actors 
(Chen et al., 2007). Qualitative uncertainty can also arise from the 
modelers’ subjective judgment, linguistic imprecision and disagreement 
across actors involved (Linkov and Burmistrov, 2003; Refsgaard et al., 
2007). 

One reason for increased model uncertainty in SoS modeling is the 
complexity that is largely a result of the increased scope of modeling, 
which comes with a larger number of models and people (and their 
perspectives) involved. The increase in the number of actors typically 
results in an increase in the overall number of parameters and their 
possible interactions (Oreskes, 2003), the number of possible decision 
pathways in the modeling process (Lahtinen et al., 2017), and the level 
of stakeholder influence at each decision fork (Ostrom, 2007). 

Increasing model complexity allows for a higher-fidelity model, but 
can also increase the perceived uncertainty in a traditional sense; known 
as the complexity paradox (Oreskes, 2003). Characterizing “true” un
certainty in an SoS model, however, is impossible as it requires a model 
that represents everything perfectly including unknown unknowns 
(Hunt, 2017). Uncertainty may then compound with each interaction 
across constituent models in the SoS framework, propagating some 
amount of error (Dunford et al., 2015). Thus, it becomes progressively 
difficult to gain insights as to what effect and influence the combinations 
of these have (structural and parameter identifiability as in Bellman and 
Åström, 1970; Guillaume et al., 2019). High levels of model uncertainty 
need not be a barrier to effective decision support, however, and is 
ameliorated by providing estimates or assessments of such uncertainties 
(Reichert and Borsuk, 2005), both quantitative and qualitative. Different 
strategies and further considerations for uncertainty assessment are 
needed in SoS modeling compared to single-system modeling. 

One commonly suggested approach to restricting model complexity 
(and possibly runtime) is to screen for insensitive parameters (Pianosi 
et al., 2016). Such parameters are said to have negligible influence on 
model output and so may be “fixed”, i.e., made static in subsequent 
analyses, or otherwise removed from the model. Another is to “tie” 
related parameters so that they may be represented by a single 
“hyperparameter” (Raick et al., 2006). Reducing the number of pa
rameters, however, does not necessarily equate to a reduction in un
certainty. Rather, it may simply mean consideration of an uncertainty 
source is determined to be unimportant for a given context or purpose 
(Pianosi et al., 2016), and doing so may trade off model fidelity under 
new unseen conditions. 

Use of a constituent model within an SoS model as opposed to its 
individual operation, or its modification or simplification through 
parameter screening and tying constitutes a change in context. There
fore, parameters initially found to be influential might become inactive 
and non-influential (and vice versa), or the relationships that led to 
parameters being tied may change. The change of context also changes 
the relevance of the assumptions and objectives, and what constitutes an 
appropriate uncertainty analysis (Song et al., 2015). Uncertainty anal
ysis conducted in one context is not valid across all scales. Thus, pre
mature model simplification may ultimately affect the appropriateness 
of the SoS model for its overarching purpose. A comprehensive sensi
tivity analysis under current and possibly alternative conditions can 
provide valuable insights into a key question: “when and how does un
certainty matter?“, as discussed in Razavi et al. (2019). An alternate view 
is that, given the likelihood of limited computational resources, efforts 

to characterize and communicate uncertainties to stakeholders may be 
more beneficial than an exhaustive sensitivity analysis (Reichert, 2020; 
Anderson et al., 2015). 

An additional consideration is that a constituent model may be a 
legacy or third-party model that cannot be modified (e.g., due to lack of 
access to the underlying code). This would introduce some hidden or 
uncharacterized uncertainty into the SoS modeling. In this case, meta
modeling (expanded on in the next subsection) might provide some help 
in simplifying the model. 

Explicit documentation of the criteria used for each constituent 
model can ensure relevance of its application and reduce contextual 
uncertainty (see Walker et al., 2003) across all the scales involved. 
Accordingly, in the recent update of the ODD protocol (Grimm et al., 
2020), a standard format for describing models, the element “Purpose” 
has been changed to “Purpose and patterns”, with patterns being the 
multiple criteria for ensuring a model’s structural realism, as defined in 
the “pattern-oriented” modeling strategy (Grimm, 2005; Grimm and 
Railsback, 2012). The effect and relative importance of model structure 
uncertainty may be assessed through expert and stakeholder knowledge 
of alternate models (van der Sluijs, 2007) and Bayesian approaches 
could be applied to characterize the known unknowns (Clark, 2005). 
Uncertainty matrices have also been suggested as a tool to qualitatively 
identify and document the source, type and nature of uncertainty and 
assess its relative priority in a table-like format (see Refsgaard et al., 
2007; Koo et al., 2020). 

Increased consideration of technical uncertainty (adopting the term 
from Walker et al., 2003) is another area which warrants further 
consideration in the SoS modeling context. Choice of what infrastructure 
and technologies to use is likely to stem from the prior experiences of the 
team(s) involved. Constituent models may be run on different infra
structure than was originally intended, especially as issues around 
computational reproducibility are addressed (Barba, 2019; Hutton et al., 
2016). Identical code run under different computational environments 
may produce different results (see for example Bhandari Neupane et al., 
2019). Such infrastructure may differ in physical or virtual architecture 
(e.g., laptop, supercomputer, or operating systems) or method of gen
erating/interpreting code (e.g., different languages, compilers, package 
versions). Various combinations of these may be used and may also 
differ in the development and application phases. For these reasons the 
influences of different and interoperating infrastructure are important 
considerations (Iwanaga et al., 2020). 

Correlation between parameters is another issue that is often ignored 
in the characterization and attribution of uncertainty (Do and Razavi, 
2020). Correlation refers to statistical dependency between parameters. 
It is different from interaction effects which refer to the presence of 
non-additive operations among two or more factors embedded in 
constitutive equations of the model. In SoS modeling the issue is further 
escalated as possible correlations between the factors of different models 
needs to be accounted for. Ignoring correlations can falsify any esti
mation of uncertainty (Do and Razavi, 2020). 

3.2.5. Testing and evaluation 
Testing and evaluation can assist in the assessment of the ramifica

tions of scale choice. In this step reasonableness of model structure and 
interpretability of relationships within models are assessed along with 
the traditional analysis of model behavior. Not all outputs produced by 
the constituent models may be relevant for the SoS model purpose and 
the validity of their outputs are affected due to the integrated nature of 
SoS modeling. For any evaluation to be effective, the specific model 
outputs of interest that are relevant for the model purpose must be well 
understood. Outputs may be at a particular spatio-temporal scale, for 
instance a long-term average of a model output over a large spatial 
domain or an extreme event at a specific point location. Issues may also 
stem from the conceptual suitability of constituent models as uncer
tainty may be propagated throughout and may compound as more 
models are integrated (Dunford et al., 2015). Thus, the first step in 
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testing and evaluation involves attempting to refute aspects of SoS 
model structure and functional relationships within the model based on 
their lack of correspondence with the represented system and the model 
outputs. Stakeholders could be leveraged to evaluate the conceptual 
alignment and appropriateness of the SoS representation at the selected 
scales. 

Evaluation of the behavioral relationships at the integrated level is 
similar to scientific hypothesis testing (Wilson et al., 2017) or “con
ceptual testing” (Iwanaga et al., 2020) wherein functional relationships 
within the SoS model are examined. Such tests may be especially useful 
in cases where the internal workings of a model are inaccessible or 
otherwise unknown but expected behavior of the constituent model in 
the integrated context can be characterized (Iwanaga et al., 2020). These 
approaches can be used to identify impossible or implausible aspects of 
the SoS model output. If any aspect of model structure or any functional 
relationship within the model can be shown to be an inadequate rep
resentation of the corresponding aspects of the real system, then that 
particular portion of the model is refuted (Li et al., 2016). Examination 
of model behavior over a range of inputs will also help to expose addi
tional inadequacies in the model (Bennett et al., 2013). 

The interesting aspect in this regard is that successful testing and 
evaluation of the constituent models does not guarantee correctness of 
the SoS model and vice versa. Testing and evaluation may happen at 
different scale levels, and acceptable model behavior depends on the 
model purpose and consequent measures or indicators of interest. Model 
behavior of constituent models could be examined quantitatively 
through assessment of the intermediate data in the models to ensure 
their behavior is consistent with a priori expectations. 

It is necessary to test the software used to interoperate data across the 
different hierarchical levels using relevant testing approaches. These 
include checking the mapping of input-outputs between models, con
version of units, use of metadata to perform semantic operations, and 
translation of spatial temporal dimensions (Ayllón et al., 2018; Belete 
et al., 2017; Voinov and Shugart, 2013). Testing processes found in 
software engineering may additionally aid in conducting such checks 
(see for example, Laukkanen et al., 2017; Verweij et al., 2010; Yoo and 
Harman, 2012). 

It may also be possible that some data gaps or uncertainties from 
constituent models have a lesser or negligible effect on the SoS model 
depending on how the constituent model is leveraged at the SoS level. 
Furthermore, constituent models may present overlapping and/or con
flicting data or assumptions that will only be revealed when testing and 
evaluating their integration. A common example is double counting un
certainty due to embedded assumptions in the model or failure to detect 
correlated variables with a common cause. 

The next step focuses more specifically on the correspondence be
tween model projections and observed data. Strictly speaking, data used 
in model testing and evaluation must be independent of data used to 
develop the model (Raick et al., 2006). A variety of visual, statistical, 
and machine learning methods are widely used to evaluate SoS models. 
The choice of method, however, should be based on the fundamental 
questions of what scenarios and observations to use in the evaluation. 
Evaluation of models under the range of conditions similar to those of 
interest can aid in identifying limitations of the model (Ramaswami 
et al., 2005). 

Sensitivity analysis is now regarded as standard practice in modeling 
(Norton, 2015; Pianosi et al., 2016; Razavi and Gupta, 2015). The 
sensitivity of SoS model behavior to changes to its constituents and their 
interactions is the target of the assessment (Moriasi et al., 2007). An 
issue stemming from the likely overparameterization of constituent 
models is equifinality and the lack of identifiability. Equifinality refers 
to the phenomenon of different implementations or combinations of 
model structure, parameter values, and their interactions producing 
equally acceptable results (Wagener et al., 2003; Beven, 2006). Identi
fiability then refers to the ability to attribute the influence on model 
outputs to unique model parameters or structure (Muñoz et al., 2014; 

Guillaume et al., 2019). Therefore, the greater the number of parame
ters, the less identifiable the model becomes. 

Sensitivities are assessed as part of identifiability analysis, typically 
by ranking parameters based on their influence on outputs which can aid 
in determining what parameters require focused efforts to reduce un
certainty or improve identifiability (e.g. Factor Prioritization; Nossent 
and Bauwens, 2012). Information from sensitivity and identifiability 
analysis can then aid in simplifying the model (as discussed in the pre
vious section). Similar to what was noted in Section 3.2.3, naively 
applying sensitivity and identifiability analysis without consideration of 
the SoS context may adversely affect modeling outcomes. 

Assessment of sensitivities would ideally rely on global, rather than 
local analyses for reasons that have been expounded in prior literature 
(see for example Pianosi et al., 2016; Saltelli and Annoni, 2010). Use of 
global sensitivity analyses in model assessment has seen increasing use, 
despite the lack of uptake or reported use of available software tools to 
conduct such analyses (Douglas-Smith et al., 2020). Still, the importance 
of such analyses tends to be under-appreciated (Saltelli et al., 2019). 

One practical reason for the lack of global sensitivity analyses is that 
they are typically computationally expensive to perform and the SoS 
models themselves typically exhibit long runtimes. Dependencies and 
correlations between parameters across constituent models and their 
respective scales pose another challenge (Koo et al., 2020). Metamod
eling (expanded on in the next section) along with recently developed 
sampling and analysis methods may be more amenable to the SoS 
context. Examples of such methods that warrant further investigation 
include moment-independent methods (such as PAWN; Pianosi and 
Wagener, 2015) which can be applied independent of the sampling 
scheme used, and variogram-based approaches (e.g. STAR-VARS; Razavi 
and Gupta, 2015) which can reportedly account for temporal and spatial 
correlations. Adaptive sampling of the parameter space, through 
sparse-grids for example, in combination with these analysis techniques, 
may also aid in reducing the computational costs associated with 
sensitivity and uncertainty analyses (Buzzard and Xiu, 2011; Xiong 
et al., 2010). 

3.3. Application phase 

A critical aspect in the application of SoS models is that constituent 
models evolve independently. Development of each constituent model, 
by necessity, is led by disciplinary experts and undergoes separate, 
asynchronous, development cycles. As each model may come from 
different paradigms and sources of knowledge, the implementation may 
be adjusted over time or even replaced in response to newly acquired 
knowledge. Advancing towards trial model applications using the ex
pected type and volume of data as early, quickly and often as possible 
allows modelers to encounter issues in the model application earlier in 
the process (Warren, 2014). Experience gained with each iteration 
subsequently serves to rectify and protect against future application 
challenges. Application of the model then requires monitoring and 
scrutinizing to ensure the underlying models (including their metadata, 
represented knowledge and application context) remain current and 
appropriate. 

When models are integrated, the runtime may prevent practical 
application for its primary purpose, such as social learning through 
interactive use with stakeholders, or for global sensitivity analyses. One 
option to overcome this problem is to simplify the constituent models for 
the specific purpose. Doing so requires a high degree of knowledge of the 
constituent models, however, and may not be practical in cases where 
legacy models are used. Spatially explicit models can especially be a 
problem in regard to runtime, and a solution for reduction in compu
tational burden may be achieved through aggregating grid cells into 
similar zones (e.g. groundwater model aggregated into hydraulic con
ductivity zones; Elsawah et al., 2017). 

In cases of high runtime, replacing the most computationally 
expensive constituent models with metamodels may be a viable option. 
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Metamodels approximate the input-output behavior of the original 
model (Castelletti et al., 2012; Christelis and Hughes, 2018; Pietzsch 
et al., 2020) and therefore provide simplified representation(s) of more 
complex models (Asher et al., 2015; Razavi et al., 2012). Metamodels 
leverage the emergent simplicity of complex systems and although there 
are a variety of methods available to accomplish this, generally meta
models require the complex models (i.e. the original constituent models) 
to be available beforehand. Metamodels, being approximations of an 
original model’s response surface, are most relevant to the conditions 
existing in the datasets upon which they are tuned, so care needs to be 
taken if using them under conditions that transcend those extant in the 
data. System forcing data beyond that experienced, such as climate 
change or groundwater extractions, are of particular concern in this 
regard. If possible, simply allocating more computational resources (e.g. 
supercomputers) may be the most pragmatic and resource efficient 
alternative, especially considering the time taken to investigate and 
implement the options listed above. It is acknowledged, however, that 
more computational capacity may not be available. 

3.3.1. Analysis and visualization 
In the management context, where SoS models are typically applied, 

there is a need to adequately describe the level of uncertainties in the 
SoS model and its predictions. Individual stakeholders may react 
differently to uncertainties and levels of uncertainty (Cockerill et al., 
2019). Presenting scenario results relative to the modeled baseline 
neatly reduces the inherent biases that come with relying on stakeholder 
preferences to inform desirable thresholds, as would usually occur in 
multi-criteria, or multi-objective, analysis approaches (Maier et al., 
2016; Martin et al., 2017; Reichert and Borsuk, 2005). With such an 
approach, the acceptability of a (possible) maximum or minimum 
relative change becomes the focus of stakeholder discussion. 

Software tooling for supporting analyses of model results (including 
sensitivity and uncertainty analyses) typically necessitates interaction 
between the analysis software and the model(s), which may require the 
development of additional interfaces (i.e. code or supporting software). 
Due to the number of models involved, the associated parameters, and 
the possibly dynamic model structure (Wirtz and Nowak, 2017), main
taining these interfaces in the SoS context may quickly become un
wieldy. Additionally, it may be desirable to replace entire models to 
analyze the influence of model structure and the scales they represent 
(Ewert et al., 2011), thus potentially rendering existing interfaces 
obsolete. Recent efforts circumvent this issue by supporting the 
near-seamless transition between the nested hierarchical representation 
common in SoS design to the conceptually simpler “flat” structure ex
pected in typical analyses (e.g. Schouten and Deits, 2020). An example 
of nested and flattened representations of a node network is provided in 
Appendix 1. 

A common requirement shared with tooling for conducting analyses 
(e.g. for sensitivity and uncertainty analysis, and exploratory modeling) 
is the provision and definition of parameter values. These may consist of 
a “default” value, a range within which values may vary, whether these 
values are categorical, scalar, or regarded as constants (examples may be 
found in Adams et al., 2014; Kwakkel, 2017; Pianosi et al., 2015; Razavi 
et al., 2019). Categorical values may indicate substitution with other 
data types or a collection of data types (e.g. rasters, climate sequences, 
etc.). Such information may be the minimum necessary to conduct such 
analyses, to reproduce and replicate results, and to support later auto
mation of these activities. Parameter values in effect represent di
mensions of scale and the inappropriate selection of their values and 
ranges may result in misleading results (Shin et al., 2013; Wagener and 
Pianosi, 2019). 

3.4. Perpetuation phase 

As in Badham et al. (2019), perpetuation is about the intended in
fluence the modeling is to have into the future. The focus here is on the 

scale of documentation and process evaluation in SoS modeling which is 
informed by the level of consensus among stakeholders and modelers as 
to its purpose. In the research context, for example, there is a newfound 
expectation that the model be developed and provided in a manner that 
supports reproducibility and replicability. Reproducibility is the ability 
to recreate results, whereas replicability captures the ability of the 
model to generate new but consistent data in other applications (Patil 
et al., 2016). 

Where SoS models are used by external stakeholders, some amount 
of technical support is likely expected. Without this, use of the model 
and thus its impact is likely to be minimal. Computational models are 
software in that they are made of code, and so continued use comes with 
a baseline cost to cover maintenance, improvements, and updating of 
documentation. Such capacity is crucial in contexts where long-term 
management and decision support is an acknowledged requirement. In 
such cases the design, implementation and documentation of the model 
should plan for these long-term activities from the beginning. In the SoS 
context this implies retaining the interdisciplinary knowledge within a 
team or organization (e.g. Cockerill et al., 2019; Kragt et al., 2013). 

3.4.1. Documentation 
Whereas earlier sections spoke to the content of documentation, this 

section focuses on the role of documentation in an interdisciplinary 
setting such as SoS modeling. Documentation is a conduit through which 
information and knowledge are propagated and provides the necessary 
context for model evaluation (Cockerill et al., 2019). Without sufficient 
documentation, it is difficult to understand the context that led to any 
specific issue, including mismatches between constituent models. Lack 
of context then affects the perceived validity of the model conceptuali
zation, restricts model use, rendering the model inappropriate or invalid 
for its purpose. 

The act of documenting itself allows for reflexive and transparent 
communication and for new insights to be gained. Undocumented as
sumptions regarding scale and their influence may compromise other 
constituent models, thus holistic awareness of the SoS issues can be 
obstructed by a lack of documentation. Long-term maintenance and use 
of the model may also be impeded (Ahalt et al., 2014). No individual 
holds the knowledge and awareness of the modeling details in their 
entirety, let alone the effects of interactions between models. It is 
therefore important to recognize that writing and maintaining docu
mentation should be a team effort, and a culture to support this should 
be fostered. 

In practice there are few incentives for documenting models to such 
an extent. A key problem in SoS model documentation is that details of 
the constituent models important for the SoS team may be considered 
unnecessary for the teams developing the constituent models. Once 
again, this stems from potential disconnects between the purpose of the 
SoS model and the individual (or original) objectives of each constituent 
model. In the sciences the focus is often on the publication of papers at 
the expense of ensuring model reuse or reproducibility and replicability 
(Easterbrook, 2014; Joppa et al., 2013; Peng, 2011; Schnell, 2018). 
There is an increasing push to change the culture surrounding the 
publication process, however, to better recognize, credit and incentivize 
model code publication. For example, a number of organizations have 
begun supporting “Open Code Badges” to highlight reproducible work 
(https://www.comses.net/resources/open-code-badge/). 

3.4.2. Process evaluation 
The extent to which the modeling has achieved its overarching 

purpose is evaluated in this step (Badham et al., 2019). This evaluation 
extends beyond the technical performance of the SoS model (Bennett 
et al., 2013) to consider outcomes of modeling as a social process. 
Success of a model depends on the beliefs and expectations of the 
intended users and in their satisfaction with the model and its results 
(Hamilton et al., 2019). It may also depend on the biases and beliefs of 
the model creators (Glynn et al., 2017) and in an alignment of 
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expectations between creators and users (Sterling et al., 2019). The 
suitability of the success criteria is dependent on the context of the 
project, including not only the model purpose, but also the character
istics of the problem, such as its complexity and the resources that were 
available (Hamilton et al., 2019). 

Process evaluation in SoS focuses on two facets: achievement of goals 
and longevity of the models. In terms of goal achievement, process 
evaluation considers whether the goals of the SoS model were supported 
by its constituent models and, where applicable, whether constituent 
models achieved their own goals. Although satisfying the goals of the 
constituent models may seem an indirect path to satisfying the goals of 
the SoS model, this interpretation is misleading. An SoS approach to 
modeling, instead of simply a multi-modeling approach, leverages the 
autonomy and independence of the constituent models. Constituent 
models still need to be capable of yielding their own outcomes, 
regardless of how those models are used in the context of the SoS model 
(Salado, 2015). 

Evaluation of the longevity of the SoS model, referring to the ability 
to leverage or reuse the SoS model over time, requires the development 
and assessment of a targeted plan for its sustainment that includes: (1) 
monitoring the evolution of the constituent models; (2) identifying al
ternatives for models that may cease their validity, availability or 
accessibility during the lifetime of the SoS model; (3) establishing a 
strategy for the continued evolution of the SoS model, including the 
development of potential transformation frameworks and implementa
tions; and (4) identifying opportunities to facilitate the sustainment of 
constituent systems aligned with the sustainment of the SoS model. 

Process evaluation for SoS models may consider adopting a reflexive 
process in which questions are asked of those involved in the modeling, 
such as ‘did the modeling process help to improve understanding of the 
system/problem?’ or ‘did the modeling process help facilitate commu
nication between stakeholders?’ (Hamilton et al., 2019). The line of 
questioning can then leverage input from the various perspectives 
available, including those of experts and stakeholders for the different 
constituent systems of an SoS. Bias in the model, such as whether their 
respective positions were adequately represented, may then be assessed. 
Alternative conceptions and processes of the system and their scales 
could also be assessed at this stage (Voinov et al., 2016). 

4. The paths forward 

4.1. A grander vision and commensurate funding 

Addressing all the scale-related issues outlined in the paper requires 
a level of cooperation and concerted integrative effort that is by and 
large not possible given the usual short-term funding of the sciences (e.g. 
Saltelli, 2018). Recent publications have also brought attention to de
ficiencies in the current science resourcing structure, characterized in 
part by competition over limited funding and an emphasis on (number 
and citation counts of) publications. Existing funding mechanisms may 
well be detrimental to the quality of science produced (Binswanger, 
2014; Sandström and Besselaar, 2018). 

Limited resourcing is one reason for the multiple, albeit siloed, ef
forts with a focus on single case studies (Pulver et al., 2018; Hoekstra 
et al., 2014), and the necessity of excluding salient aspects of the 
modeling (such as adequate participatory processes; Eker et al., 2018) or 
making less than ideal choices about the model or data (e.g. using 
existing coarser scale data rather than collecting new data at a finer 
scale). Commentary by researchers highlight the importance of inter
disciplinary work (Kretser et al., 2019; Meirmans et al., 2019), which is 
typically not funded to the same extent as monodisciplinary efforts 

(Kwon et al., 2017; Bromham et al., 2016). Regardless of the importance 
of such holistic assessments these real-world constraints essentially 
make holistic SoS modeling and analyses unrealistic. 

On the other hand, examples of large concerted efforts can be found, 
such as in astronomy and physics which have produced groundbreaking 
work with the Event Horizon Telescope (e.g. first photograph of a 
blackhole, Akiyama, 2019) and the Large Hadron Collider (e.g. discov
ery of the Higgs boson, Aad et al., 2012). These resource intensive 
projects are important and could substantially influence future societal 
development. At the same time, lesser importance is placed by funding 
organizations on interdisciplinary socio-environmental works which 
arguably have a more immediate impact and benefit to society. 

A grander vision for SoS research, in line with large-scale collabo
rations in other fields, is vital to achieve a truly holistic consideration of 
SoS modeling for resolving socio-environmental issues. Realizing this 
vision itself requires fundamental shifts in how such interdisciplinary 
work, and associated expertise, are viewed and funded (Elsawah et al., 
2020). Greater funding focused on education and training of interdis
ciplinary system practitioners is fundamental for greater cohesion and 
consensus in the socio-environmental sciences (Little et al., 2019). While 
alternative funding models have been suggested for the sciences (see for 
example Meirmans et al., 2019; Higginson and Munafò, 2016), the 
current state of affairs is unlikely to change in the near future. Thus, any 
benefits from a systemic change, if they occur at all, will be experienced 
only in the long-term. 

Although disciplinary experts may collaborate, pool resources, 
engage with stakeholders and gain experience in interdisciplinary work 
in the process of investigating a socio-environmental issue, this is not an 
effective way forward. In the medium-term, existing case studies could 
be leveraged to perform a comparative meta-analysis to determine the 
level of influence system connections have, and the scales at which such 
connections matter (Pulver et al., 2018). Such meta-analyses could 
extend to the practices used to manage the socio-technical influences in 
the modeling process. Shifts towards leveraging collections of studies for 
meta-analyses are emerging in fields such as psychology to allow for 
what is known as “statistical objectivity” towards reported findings in 
the literature (Freese and Peterson, 2018). Although the focus there is in 
resolving issues of replicability, the same approach can be additionally 
leveraged to characterize scale commonalities. 

We conclude here by re-emphasizing three key considerations which 
can reinforce current SoS modeling efforts in a move towards the larger 
consensus needed for this grander vision. 

4.2. Strengthen interdisciplinary communication 

Here lies the crux of the challenge in developing a tiered SoS model. 
It is not only necessary for the science and engineering to mesh together 
appropriately, but it is fundamental that the modeling process also 
consider and embed the socio-technical considerations. While we as 
modelers struggle with the former, the latter is too often ignored. As 
there are a variety of participants, and therefore disciplinary perspec
tives involved, a key set of considerations are in the social dimensions 
that provide the interface between modeling efforts. 

Integrating multiple perspectives requires an integrative approach 
which is ultimately necessary to navigate towards a beneficial system 
change (why else do we model?). Choices made in the treatment of scale 
are unavoidable and may result in conflicting decisions with separate 
implications. Just to name one, members of teams may have a path pre- 
selected without full consideration of the implications on the system 
representations, leading to further issues when such decisions are not 
communicated. 
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The next generation of systems modelers would ideally embody a 
culture that is cognizant of the socio-technical issues, considerations, 
and their influences throughout the modeling process (e.g. Little et al., 
2019). Such a systemic cultural shift can only be developed in the longer 
term, however, and so in the meantime clearer communication requires 
adequate resourcing for documenting decisions made, and code and 
data used, including their maintenance. Practices for the co-production 
of knowledge to fulfill the needs and requirements of the modeling is 
necessary for advances to be made (Norström et al., 2020). 

There is often a preference for face-to-face meetings to facilitate the 
necessary level of communication but that may not always be possible. 
Geographic distance, scheduling conflicts, travel restrictions and other 
factors may preclude such activities. Communication technologies play 
a critical role in mitigating some aspects of the issue. For example, travel 
and social distancing restrictions during the COVID-19 pandemic has 
prohibited many teams from meeting in person, forcing reliance on 
technologies such as video conferencing. Regardless of the mode of 
communication, a team and organizational culture of consistent and 
continual communication is one necessity repeatedly highlighted to 
resolve a variety of scale issues and the conflict that may arise between 
actors throughout the modeling process. Incorporating knowledge 
beyond the bounds of one’s own disciplinary training is crucial to the 
holistic attention to and incorporation of scales and to avoid the siloing 
of information and knowledge, and to break down cognitive constraints. 

4.3. Improve documentation processes 

The importance of documentation is another aspect that was 
repeatedly raised throughout this paper. Documentation of the modeling 
process communicates, and makes accessible, the decisions, actions, the 
context of those decisions and actions, and reflection on those choices to 
those who may or may not have been active participants in their making. 
Insufficient documentation affects many aspects from the pace of model 
development throughout the modeling cycle, quality of model integra
tion especially across disciplinary boundaries, and the perceived quality 
of the modeling conducted. A lack of documentation accessibility 
additionally affects the (re)use and maintenance of the SoS model (or its 
constituents) and so could lead to duplication of effort across those 
involved in modeling SESs. 

One approach to ensure that documentation is made a priority is to 
adopt a documentation-driven development and design approach 
(Heeager, 2012). Such approaches are exemplified by the ODD Protocol 
(Grimm et al., 2020, 2014, 2010). In this paradigm, documentation is 
developed first, serving as a vehicle for discussion, ideally prior to any 
model development (Heeager, 2012). Ambiguities in the documentation 
(and thus the modeling) may be addressed earlier in the process as a 
result, and documentation could be iteratively revised, commensurate 
with any changes to modeling scale. Furthermore, maintaining Records 
of Engagement and Decision-making (RoED, Cockerill et al., 2019) to 
document the process and pathway decisions were made in a 
context-appropriate manner may be crucial to ensuring conceptual and 
technical validity throughout the modeling cycle. Sufficient, rather than 
exhaustive, documentation to describe model context would be 
preferred (Ambler, 2002; Cockerill et al., 2019). 

4.4. Explicit consideration of scale and uncertainty 

There is an increasing expectation that SoS models can more 
completely represent processes within an SES, however, it is impossible 
to model everything for all purposes. Further explicit consideration of 
the inter-relationships between scales, choices made in representing 
scale, and their influence on uncertainty is paramount in the SoS 

context. Identifying, managing and reconciling the disparate treatment 
of scale is a key step towards a holistic approach, as opposed to the 
concurrent, but separate, processes currently applied (Cheong et al., 
2012; Elsawah et al., 2020). 

As noted several times throughout this paper, the socio-technical 
context has an inordinate influence on uncertainty. In addition to the 
communication and documentation considerations outlined above, an 
avenue for a more holistic assessment of uncertainty includes the use of 
robustness analysis (Grimm and Berger, 2016). In such analysis, a model 
with multiple systems is systematically deconstructed through forceful 
changes to the model parameters, structure, and process representations 
within each system to assess uncertainty. Use of these approaches with 
pattern-oriented modeling processes, which filter unsuitable represen
tations across scales, may also be helpful in this regard (Grimm and 
Railsback, 2012; Gupta et al., 2008). 

Additionally, qualitative and quantitative uncertainties could be 
jointly assessed through the representation of multiple plausible futures 
that stem from different sets of assumptions through exploratory ap
proaches (Maier et al., 2016; Roberts et al., 2018; Rounsevell and 
Metzger, 2010). A related approach is a multi-model approach wherein 
an ensemble of equally plausible models are applied to identify the in
fluence of structural and qualitative uncertainty (Matott et al., 2009; 
Tebaldi and Knutti, 2007; Uusitalo et al., 2015). Using an ensemble of 
estimates (such as the average or median of model outputs) may have 
the benefit of providing more robust and accurate forecasts (Willcock 
et al., 2020). Applying these on different computational platforms may 
additionally assist in identifying technical uncertainties (Iwanaga et al., 
2020). 

It was noted throughout this paper that the scale of the modeling 
itself should be commensurate with the available resources and purpose. 
A holistic SoS model may not be entirely possible given resource con
straints, however relationships between systems can still be acknowl
edged and represented (albeit simplistically). Doing so allows some 
assessment of the uncertainties at least, and constitutes a step towards 
holistic SoS modeling so long as the underlying assumptions are 
explicitly documented (e.g. Kloprogge et al., 2011). 
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Appendix 1 

Example of hypothetical model inputs for a hydrological routing model provided in a nested data structure (left column) compared to a more 
traditional “flat” format (right column). Nested structures are arguably better suited for representing collections of data structures and their re
lationships (e.g. a network or graph structure) and, pragmatically, are typically more amenable to the inclusion of comments and multiple values 
associated with specific parameters, reducing cognitive overhead. While perhaps more readable, a disadvantage of nested representations is the 
additional complexity that may be perceived.
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Kokko, H., Reid, J.M., Neiman, M., 2019. Science policies: how should science 
funding be allocated? An evolutionary biologists’ perspective. J. Evol. Biol. 32, 
754–768. https://doi.org/10.1111/jeb.13497. 

Midgley, G., Pinzón, L.A., 2011. Boundary critique and its implications for conflict 
prevention. J. Oper. Res. Soc. 62, 1543–1554. https://doi.org/10.1057/ 
jors.2010.76. 

Miyasaka, T., Le, Q.B., Okuro, T., Zhao, X., Takeuchi, K., 2017. Agent-based modeling of 
complex social–ecological feedback loops to assess multi-dimensional trade-offs in 
dryland ecosystem services. Landsc. Ecol. 32, 707–727. https://doi.org/10.1007/ 
s10980-017-0495-x. 

Moore, R.V., Tindall, C.I., 2005. An overview of the open modelling interface and 
environment (the OpenMI). Environmental Science & Policy, Research & 
Technology Integration in Support of the European Union Water Framework 
Directive 8, 279–286. https://doi.org/10.1016/j.envsci.2005.03.009. 

Moriasi, D.N., Arnold, J.G., Liew, M.W.V., Bingner, R.L., Harmel, R.D., Veith, T.L., 2007. 
Model evaluation guidelines for systematic quantification of accuracy in watershed 
simulations. Transactions of the ASABE 50, 885–900. https://doi.org/10.13031/ 
2013.23153. 
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